Estrogen receptor-mediated repression of human hepatic lipase gene transcription.

نویسندگان

  • Daniel R Jones
  • Robert J Schmidt
  • Richard T Pickard
  • Patricia S Foxworthy
  • Patrick I Eacho
چکیده

Estrogen replacement therapy in women decreases hepatic lipase (HL) activity, which may account for the associated increase in HDL cholesterol. To investigate whether estrogen decreases HL transcription, transient cotransfection assays with HL promoter and estrogen receptor-alpha (ERalpha) expression constructs were performed in HepG2 cells. 17beta-estradiol (E(2)) decreased transcription driven by the -1557/+41 human HL promoter by up to 50% at 10(-7) M. Mutation of ERalpha by deletion of its transactivation domains or ligand-binding domain eliminated E(2)-induced repression of the promoter, whereas deletion of the DNA-binding domain of ERalpha resulted in a 7-fold activation by E(2). The E(2)-induced repression was maintained after mutation of a potential estrogen-response element in the promoter. The region of estrogen responsiveness was localized to -1557/-1175 of the HL promoter by deletion analysis. Mutation of an AP-1 site at -1493 resulted in a partial loss of E(2)-induced repression, similar to that caused by deletion of nucleotides -1557 to -1366. Gel shift assays with nuclear extracts from E(2)-treated HepG2 cells stably expressing ERalpha demonstrated an increase in binding to an AP-1 consensus oligonucleotide. The AP-1 activator, phorbol 12-myristate 13-acetate, inhibited the HL promoter by greater than 50%. Collectively, the data suggest that estrogen represses the transcription of the HL gene, possibly through an AP-1 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells.

OBJECTIVE Estradiol (E2) regulates gene transcription by activating estrogen receptor-α and estrogen receptor-β. Many of the genes regulated by E2 via estrogen receptors are repressed, yet the molecular mechanisms that mediate E2-induced gene repression are currently unknown. We hypothesized that E2, acting through estrogen receptors, regulates expression of microRNAs (miRs) leading to repressi...

متن کامل

Repression of cancer protective genes by 17 -estradiol: Ligand-dependent interaction between human Nrf2 and estrogen receptor

Repression of cancer-protective phase II enzymes may help explain why estrogen exposure leads to the development of cancer. In an earlier report we described the ability of 17 -estradiol (E2) to repress phase II enzyme activity in vivo. Phase II enzymes are coordinately regulated via the presence of the antioxidant response element (ARE) in their promoter. We wanted to determine if estrogen rec...

متن کامل

Structure-Function Analysis of the Estrogen Receptor Corepressor Scaffold Attachment Factor-B1

Scaffold attachment factor-B1 (SAFB1) is a nuclear matrix protein that has been proposed to couple chromatin structure, transcription, and RNA processing. We have previously shown that SAFB1 can repress estrogen receptor (ER )-mediated transactivation. Here we present a structure-function study showing that transactivation is mediated via an intrinsic and transferable Cterminal repression domai...

متن کامل

Structure-function analysis of the estrogen receptor alpha corepressor scaffold attachment factor-B1: identification of a potent transcriptional repression domain.

Scaffold attachment factor-B1 (SAFB1) is a nuclear matrix protein that has been proposed to couple chromatin structure, transcription, and RNA processing. We have previously shown that SAFB1 can repress estrogen receptor (ERalpha)-mediated transactivation. Here we present a structure-function study showing that transactivation is mediated via an intrinsic and transferable C-terminal repression ...

متن کامل

Distinct Roles for Aryl Hydrocarbon Receptor Nuclear Translocator and Ah Receptor in Estrogen-Mediated Signaling in Human Cancer Cell Lines

The activated AHR/ARNT complex (AHRC) regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Importantly, evidence has shown that TCDD represses estrogen receptor (ER) target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element site...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2002